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We investigate statistical properties of vorticity fluctuations in fully developed turbulence, which are known
to exhibit a strong intermittent behavior. Taking as the starting point the Navier-Stokes equations with a
random force term correlated at large scales, we obtain in the high Reynolds number regime a closed analytical
expression for the probability distribution function of an arbitrary component of the vorticity field. The central
idea underlying the analysis consists in the restriction of the velocity configurational phase-space to a particular
sector where the rate of strain and the rotation tensors can be locally regarded as slow and fast degrees of
freedom, respectively. This prescription is implemented along the Martin-Siggia-Rose functional framework,
whereby instantons and perturbations around them are taken into account within a steepest-descent approach.
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The intermittent nature of turbulent flows, long ago dis-
covered by Batchelor and Townsend[1], has been an issue of
main concern in fluid dynamic research. Despite the great
investigation efforts taken so far, boosted in the last two
decades by considerable experimental and numerical
progress, there is not yet a clear theoretical understanding of
intermittency(see Ref.[2] for an overview). In fact, the sud-
den and intense vorticity bursts observed at high Reynolds
numbers can be addressed in general along two distinct—but
not necessarily incompatible—viewpoints. Strong fluctua-
tions may arise as a consequence of local vorticity amplifi-
cation by stretching, induced on its turn by strain defined at
larger scales. Alternatively, high peaks of enstrophy and dis-
sipation are also detected whenever a vortex coherent struc-
ture is advected across the measurement position. Such an
interpretation ambiguity was emphasized in the recent ex-
perimental work by Zeffet al. [3], where some support was
given for the dominance of the former, local mechanism of
vorticity bursting.

Intermittency is frequently characterized in homogeneous
isotropic turbulence by the statistical properties of the veloc-
ity derivatives sij ;]iv j, which, as expected on general
grounds, have their second and higher moments diverging as
some power of the inverse viscosity[4]. A relevant problem
is to find the profile of the probability distribution function
tails (pdf tails) of sij . Exact answers have been found in the
simpler realm of the Burgers model, where a strong form of
intermittency is observed due to the dynamics of shock
waves. It turns out that in general the velocity derivative pdf
tail converges in a pointwise sense toCusu−7/2 [5,6], for s,0,
in the vanishing viscosity limitn→0 (for s.0 the pdf decay
is faster than Gaussian). In contrast, much less is known in
the case of three-dimensional incompressible turbulence. Ac-
tually, just a few attempts to describe the viscous asymptotic
expressions for the pdfs of the velocity derivatives are avail-
able so far, devised on the grounds of phenomenological
multifractal ideas[7–9], which stress the dissipative role
played by small scale vortex structures.

The main result of this letter, to be obtained with the help
of functional techniques, is an analytical expression for the
tails of the vorticity pdfrsvd in the high Reynolds number
limit, where v is an arbitrary Cartesian component of the
vorticity vector vi =ei jk] jvk. Our starting point is the effec-

tive modeling of turbulence, as described by the stochastic
Navier-Stokes equations,

]tva + vb]bva = − ]aP + n]2va + fa, ]ava = 0. s1d

The Gaussian random forcefasx ,td has a vanishing mean
value and the two-point correlatorDabsx−x8ddst− t8d, with

Dabsx − x8d = dabD0 exps− ux − x8u2/L2d. s2d

Assuming the Kolmogorov cascade picture[4], energy is in-
jected into the fluid at rateD0, within large length scales of
order L, and dissipated at the microscopic scaleh,n3/4

→0, where viscous effects come into play.
Let G=rcdxava be the circulation evaluated at timet=0,

for a circular contourc of radius R→0, counterclockwise
oriented and centered at the origin in thexy plane. The vor-
ticity pdf rsvd may be written in terms of the characteristic
functionalZsld;kexpsilGdl as

rsvd = lim
R→0

R2

2
E

−`

`

dl exps− ilvpR2dZsld. s3d

The radiusR enters in the formalism as a regularizing pa-
rameter to handle some singular expressions which appear in
the course of computations(R→0 is taken at fixedn). The
Martin-Siggia-Rose functional approach[10] may be now
recalled to putZsld into a path integration form. Up to a
normalization factor[11], we have

Zsld =E Dv̂DvDPDQexpsiSd, s4d

where the Martin-Siggia-Rose action is given by

S=E d3xWE
−T

0

dtL + lG, s5d

related to the non-local Lagrangian density

L = v̂as]tva + vb]bva − n]2va + ]aPd

+ Q]ava +
i

2
v̂aE d3x8Dabsx − x8dv̂bsx8,td. s6d

Of course, the limitT→` is intended in(5). However, we
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will resort in practice to a temporal domain of sizeT
=kL2/n, having the order of the viscous decay time of
smooth large scale fluctuations(introduced in the forthcom-
ing instanton computations), wherek is some Reynolds num-
ber dependent dimensionless parameter. Free boundary con-
ditions are allowed att=−T,0.

As an attempt to single out the phase-space sector where
strong fluctuations ofG develop, we perform the analytical
mappingl→−il in (5), taking afterwards the largel limit.
The saddle-point technique may then be employed to set
non-perturbative field configurations(instantons) which
would solve the variational equationdS=0, and hopefully
yield the dominant asymptotic behavior ofZsld, directly re-
lated to the form of the vorticity pdf tails. These computa-
tional steps, which can be carried out for the analysis of pdf
tails of general observables, constitute the essence of the
instanton method[12], successfully applied to problems like
the random advection of a passive scalar and Burgers turbu-
lence[12–15]. Unfortunately, the implementation of the in-
stanton approach in the three-dimensional incompressible
situation is plagued with non-perturbative difficulties, as pre-
viously noted in Ref.[12]. It is somewhat simple to under-
stand why the saddle-point action that would be obtained
along the above lines cannot lead to the correct vorticity pdf
tails (or to the pdf tails of any linear combination of velocity
derivatives). Since the saddle-point equations are invariant
under the transformations

n8 = h1/2n, t8 = h−1/2t, x8 = x, va8 = h1/2va,

s7d
v̂a8 = hv̂a, P8 = hP, Q8 = h3/2Q, l8 = hl,

whereh is an arbitrary scaling parameter, it follows that the
saddle-point action has necessarily the general formS
=l3/2fsl−1/2nd, yielding, in the high Reynolds number limit,
lnfrsvdg,−v3 at the right tail(that is, v.0), which is a
very unlikely expression under the light of numerical and
experimental findings[16–20].

One might conjecture that the functional approach would
work if fluctuations around the instanton were taken into
account, possibly to all orders in the perturbation series, to
overcome thel3/2 dependence in the saddle-point action.
However, this is an extremely hard task to accomplish. A
more computationally oriented point of view is to hypoth-
esize that a family of instanton solutions could be defined
from the start, so that the overall contribution of the associ-
ated saddle-point actions would lead ultimately to physically
meaningful results. Indeed, we have found that the latter op-
tion is the most promising one.

The hint on how to set up a family of instanton configu-
rations comes from the hypothesis that the small scale, in-
tense bursts assumed to dominate the inviscid vorticity pdf
tail are driven by the rate of strain provided by larger eddies,
which according to standard ideas, fluctuate on slower time
scales[21]. In fact, several turbulence models depict vortic-
ity enhancement along the energy cascade as a local process
which takes place in a static background defined by an ex-
ternal straining flow[22]. Among the manifold scenarios
proposed in the literature, it is worth mentioning Lundgren’s

modeling of stretched vortex tubes with internal spiral struc-
ture [23], intimately connected with the observations re-
ported in a remarkable recent experiment by Cuyperset al.
[24].

The above phenomenological considerations motivate us
to revisit the functional strategy initially founded on Eqs.
(3)–(6). The point is to separate, in the integration measure,
the slow degrees of freedom(the rate of the strain tensor)
from the fast ones(the rotation tensor). To achieve this goal,
we insert the identity 1=eDssdfsab

s −s]avb+]bvad /2g in the
integrand of(4). Defining

Z̃sfssg,ld =E Dv̂DvDPDQDQ̃expsiS̃d, s8d

a strain-dependent characteristic functional, associated to the
modified Martin-Siggia-Rose action

S̃= S+
1

2
E d3xdtQ̃abs]avb + ]bva − 2sab

s d, s9d

we write, after exchanging the order of integrations, the al-
ternative(and exact) expression for the vorticity pdf in the
conditional form,

rsvd = lim
R→0

R2

2
E DssE

−`

`

dl exps− ilvpR2dZ̃sfssg,ld.

s10d

It is clear, thus, that instanton configurations may be natu-
rally labeled(in a functional sense) by the rate of the strain
tensorsab

s , if they are now found as solutions of the saddle-

point equations derived fromdS̃=0, viz.,

]ava = ]av̂a = ]avb + ]bva − 2sab
s = 0, s11ad

D+v̂a − v̂b]avb + ]bsvbv̂a + Qab
! d + il

dG

dva

= 0, s11bd

D−va + vb]bva + ]aP + iDab ^ v̂b = 0. s11cd

Above, we haveD± ;]t±n]2, Qab
! ;Q̃ab+Qdab, and

dG

dva

= e3ba

xb

r'

dsr' − Rddszddstd, s12d

where r'=Îx2+y2. As can be easily checked, the saddle-
point Eqs.(11a)–(11c) are invariant under(7), replacingQ
by Qab

! and addingssab
s d8=h1/2sab

s to the set of transforma-
tions. At high Reynolds numbers, the modified saddle-point

action will have then the functional formS̃=l3/2ffl−1/2ssg.
It would not be an easy matter to solve exactly Eqs.

(11a)–(11c). However, as a general and valuable feature of
the instanton method, it is not necessary to know the detailed
global form of solutions of the saddle-point equations
[12–15]. In our particular problem, the small radiusR of the
integration contour forG, which is in the viscous range, in-
dicates that a linearization ofvasx ,td aroundx=0 would suf-
fice. Also, as a first order approximation, the rate of the strain
will be considered time-independent, as suggested from its
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role as a slowly fluctuating variable in the vorticity intensi-
fication process.

While we are not worried with the global spatial behavior
of the velocity field, the instantons are required to have finite
action, and to satisfy the boundary conditionv̂asx ,0+d=0,
assuring that solutions forv̂asx ,td will not blow up for t
→`, once the parabolic operatorD+ is non-negatively eigen-
valued. We may replace, equivalently, thev̂asx ,0+d=0 con-
dition by

v̂asx,0−d = ile3ba

xb

r'

dsr' − Rddszd, s13d

as it follows from the evolution equation forv̂asx ,td and the
former boundary condition itself. Taking now]bQab

!

= v̂bs]avb−]bvad in (11b), we get, fort,0,

D+v̂a − v̂b]bva + vb]bv̂a = 0, s14d

which is a Helmholtz-like equation. It is in fact always pos-
sible to obtain a symmetric tensor solution forQab

! , closely
related to the result that the support ofv̂asx,0−d, a singular
ring, is backwardly advected in time by the reversed velocity
field, as implied by Eq.(14). It is not difficult to prove that
the backward advection of the singular ring will generate a
contour with bounded length(and hence a non-vanishing
saddle-point contribution) for all t,0 if and only if s13

s

=s23
s =0, and the two eigenvalues ofsab

s in the xy plane are
positive. Therefore, it is worth noting that the functional in-
tegration in(10) turns to be effectively replaced by ordinary
integrations over the linearly independent matrix compo-
nentss11

s , s12
s , ands33

s of the rate of the strain. Observe that
s22

s is not in the set of integration variables, sinces11
s +s22

s

+s33
s =0, according to the incompressibility condition.
We focus the analysis of the saddle-point equations on the

class of axisymmetric instantons, having in mind the axial

symmetry ofZ̃sfssg ,ld. The general form ofZ̃sfssg ,ld will
be found through a symmetrization procedure, taking into

account thatZ̃sfssg ,l=0d is invariant under transformations
of the full rotation group,and any eventuall-dependent cor-
rection factor will be invariant only under rotations around
thez axis. In concrete terms, we are just taking advantage of
the fact that Eqs.(11a)–(11c) become fully axisymmetric and
consequently more manageable if we write the rate of the
strain tensor—the static background in the saddle-point
equations—assab

s =asdab
' −2da3db3d, wherea is an arbitrary

positive parameter, anddab
' ;e3age3bg. We get, then, the

saddle-point configuration

Q̃absx,td = − ilvstddab
' QsRexpsatd − r'ddszd,

Qsx,td = 0,Psx,td = sv2std/4 − a2dr'
2 /2 − 2a2z2,

s15d
vasx,td = sab

s xb − vstde3abxb/2,

v̂asx,td = ile3ba

xb

r'

dsr' − Rexpsatdddszd,

whereQs·d is the Heaviside function, and

vstd =
pD0lR2

aL2 exps− 2autud s16d

is the instanton vorticity. The imposition ofvas0,td=0 in

(15) is guaranteed from the invariance ofS̃under generalized
Galilean transformations[25], while the pressurePsx ,td is
fixed up to some unimportant additive time-dependent func-
tion, associated to the large scale boundary conditions. In
order to consider the effects of smooth fluctuations around
the instanton solutions, we take the fields given in(15) and
perform the substitutionsva→va+dva, v̂a→ v̂a+dv̂a, etc.,

in the path integration(8), keeping inS̃ terms defined up to
the second order in the perturbations. The integrations over

dQ̃ and dQ enforce the constraints]advb+]bdva=0 and
]adva=0, respectively. Therefore, still working in the linear
approximation for the velocity field, we will havedvasx ,td
=Fabxb, with Fab;eabgfg. Defining, furthermore,v̂abstd
=ed3xxadv̂b (an antisymmetric tensor, as it follows from the
integration overdP), we obtain the phase-space reduced ex-
pression

Z̃sfssg,ld = expS−
p2D0R

4l2

2L2a
D E Dv̂abDFab exps− Md,

s17d

which depends on the effective action

M =E
−T

0

dtFD0

L2 v̂ab
2 − iv̂abSḞab +

1

2
sgd

s egabedrhFrhDG .

s18d

The subsequent integration overv̂ab gives

Z̃sfssg,ld = expS−
p2D0R

4l2

2L2a
D E Dfa exps− Hd, s19d

where we have now

H =
L2

2D0
E

−T

0

dtsḟa − sab
s fbd2 + effa

2s0d + fa
2s− Tdg.

s20d

The functional determinant factor in(19) can be exactly
computed, from its relation to the problem of a set of three
one-dimensional Euclidean harmonic oscillators[26]. The
term proportional toe→0+ in H provides a zero-mode regu-
larization of the functional integration. We find, thus, taking
together the saddle-point action and the fluctuations around
the instantons,

Z̃sfssg,ld =
expsp2D0R

4l2/L2s33
s d

ÎdetfcoshsssTdg
. s21d

The rate of the strain tensor which appears in(21) can be
diagonalized through a simple rotation by an angleu around
the z axis. Let s11

s =p−q, s22
s =p+q, and s33

s =−2p be the
matrix elements ofss in its diagonal form, wherep andq are
real parameters. The jacobian of the mappingsp,q,ud
→ ss11

s ,s12
s ,s33

s d is 4uqu, and we write, on the basis of(10),
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rsvd = lim
R→0

R2

2
E

0

`

dpE
0

p

qdqE
−p/2

p/2

du

3E
−`

`

dl exps− ilvpR2dZ̃sfssg,ld. s22d

In the largeT limit the hyperbolic cosine in(21) is well
approximated by a simple exponential and the vorticity pdf
may be written in a closed analytical form. We get the
t-distribution

rsvd =
15sgkv2ld3

16sv2 + gkv2ld7/2, s23d

whereg~k and kv2l is the actual expectation value of the
squared vorticity, to be taken from experiments or numerical
simulations(we haveedvv2rsvd=gkv2l /4). We expect Eq.
(23) to apply only at the pdf tails and their leading order
corrections, whereuvu@Îkv2l.

A high precision agreement holding around three decades
of the vorticity pdf is found between the tails predicted by
(23), with g.5.5 andÎkv2l.10, and the results of numeri-
cal simulations at moderately high Reynolds number[19], as
shown in Fig. 1. The vorticity pdf is dominated by vortex
tubes [19], as corroborated by a systematic wavelet study
[20]. The relevant vorticity range in our fit is localized con-
siderably beyond the usual Gaussian core. It is an interesting
problem, left for further investigation, to determine the Rey-
nolds number dependence, if any, of the fitting parameterg.

To summarize, we studied the form of vorticity pdf tails at
high Reynolds numbers by means of the instanton technique.
We took into account, as an essential phenomenological mo-

tivation, the idea that the intermittent vorticity bursts ob-
served in turbulent flows arise from the coupling of vorticity
and relatively slow fluctuations of the rate of the strain ten-
sor. A supporting comparison was established between the
vorticity pdf tails given by(23) and previous numerical re-
sults.
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FIG. 1. The vorticity pdf tails taken from(23) (solid lines) are
compared to numerical results[19,20] at the Taylor-scale Reynolds
numberRl=150.
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