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Statistics of intense turbulent vorticity events
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We investigate statistical properties of vorticity fluctuations in fully developed turbulence, which are known
to exhibit a strong intermittent behavior. Taking as the starting point the Navier-Stokes equations with a
random force term correlated at large scales, we obtain in the high Reynolds number regime a closed analytical
expression for the probability distribution function of an arbitrary component of the vorticity field. The central
idea underlying the analysis consists in the restriction of the velocity configurational phase-space to a particular
sector where the rate of strain and the rotation tensors can be locally regarded as slow and fast degrees of
freedom, respectively. This prescription is implemented along the Martin-Siggia-Rose functional framework,
whereby instantons and perturbations around them are taken into account within a steepest-descent approach.
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The intermittent nature of turbulent flows, long ago dis-tive modeling of turbulence, as described by the stochastic
covered by Batchelor and Townsefid, has been an issue of Navier-Stokes equations,
main concern in fluid dynamic research. Despite the great _ 5 _
investigation efforts taken so far, boosted in the last two Mot Vpdgua == 0P+ vV +foy d0a=0. (1)
decades by considerable experimental and numencg/lge Gaussian random forde(x,t) has a vanishing mean

progress, there is not yet a clear theoretical understanding A VS —t1) Wi
intermittency(see Ref[2] for an overview. In fact, the sud- lue and the two-point correlatdi)aﬁ(x X')8(t=t'), with

den and intense vorticity bursts observed at high Reynolds Dap(X = X) = 8,4D0 exp(—|x = x'|%/L?). (2)
numbers can be addressed in general along two distinct—but ) . o
not necessarily incompatible—viewpoints. Strong fluctua-Assuming the Kolmogorov cascade pict{i#, energy is in-
tions may arise as a consequence of local vorticity amplifijected into the fluid at rat®,, within large length scales of
cation by stretching, induced on its turn by strain defined aprder L, and dissipated at the microscopic scaje- v**
larger scales. Alternatively, high peaks of enstrophy and dis— 0, where viscous effects come into play.

sipation are also detected whenever a vortex coherent struc- Let I'=§.dx,v, be the circulation evaluated at tinte0,
ture is advected across the measurement position. Such &r a circular contourc of radius R— 0, counterclockwise
interpretation ambiguity was emphasized in the recent exeriented and centered at the origin in tkeplane. The vor-
perimental work by Zefet al. [3], where some support was ticity pdf p(w) may be written in terms of the characteristic
given for the dominance of the former, local mechanism offunctional Z(\) = (exp(izI)) as

vorticity bursting.

Intermittency is frequently characterized in homogeneous
isotropic turbulence by the statistical properties of the veloc-
ity derivatives s;=dv;, which, as expected on general
grounds, have their second and higher moments diverging aghe radiusR enters in the formalism as a regularizing pa-
some power of the inverse viscos[y]. A relevant problem rameter to handle some singular expressions which appear in
is to find the profile of the probability distribution function the course of computation®— 0 is taken at fixedy). The
tails (pdf tails) of ;. Exact answers have been found in theMartin-Siggia-Rose functional approadt0] may be now
simpler realm of the Burgers model, where a strong form ofrecalled to putZ(\) into a path integration form. Up to a
intermittency is observed due to the dynamics of shockiormalization factof11], we have
waves. It turns out that in general the velocity derivative pdf
tail converges in a pointwise senseQfs|~"/?[5,6], for s<0, Z(\) :f DoDvDPDQ exp(iS), (4)
in the vanishing viscosity limiv— 0 (for s>0 the pdf decay
is faster than Gau;si;inln_ contrast, much _Iess is known in oo the Martin-Siggia-Rose action is given by
the case of three-dimensional incompressible turbulence. Ac-
tually, just a few attempts to describe the viscous asymptotic f 3o f 0

S= | d° [ dtL+A\I,
-T

2 o]
p(w) = lim R J d\ exp(— iNwTR%)Z(\). (3)
R—0 2 .

expressions for the pdfs of the velocity derivatives are avail- (5
able so far, devised on the grounds of phenomenological
multifractal ideas[7—9], which stress the dissipative role related to the non-local Lagrangian density
played by small scale vortex structures.

The main result of this letter, to be obtained with the help
of functional techniques, is an analytical expression for the i
tails of the vorticity pdfp(w) in the high Reynolds number +Qd,+ Eﬁaf XD 45X = X )0 5(X" 1), (6)
limit, where w is an arbitrary Cartesian component of the
vorticity vector w;=e€jjdjv. Our starting point is the effec- Of course, the limitT — o is intended in(5). However, we

L =004+ 0000 = PV 4+ 34P)
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will resort in practice to a temporal domain of siZle  modeling of stretched vortex tubes with internal spiral struc-

=«L?/v, having the order of the viscous decay time ofture [23], intimately connected with the observations re-

smooth large scale fluctuatioistroduced in the forthcom- ported in a remarkable recent experiment by Cuymtral.

ing instanton computatiopsvherex is some Reynolds num-  [24].

ber dependent dimensionless parameter. Free boundary con-The above phenomenological considerations motivate us

ditions are allowed at=-T,0. to revisit the functional strategy initially founded on Egs.
As an attempt to single out the phase-space sector whe(8)—(6). The point is to separate, in the integration measure,

strong fluctuations of" develop, we perform the analytical the slow degrees of freedofthe rate of the strain tensor

mapping\ — =i\ in (5), taking afterwards the large limit. from the fast onegthe rotation tensgr To achieve this goal,

The saddle-point technique may then be employed to sete insert the identity 1#D055[02B—(aavﬁ+aﬁva)/2] in the

non-perturbative field configurationginstantong which  integrand of(4). Defining

would solve the variational equatiofS=0, and hopefully

yield the dominant asymptotic behavior B\ ), directly re- 2([05] \) :f DﬁDvDPDQDbexp(ié) ®)

lated to the form of the vorticity pdf tails. These computa- ' ’

tional steps, which can be carried out for the analysis of pdf : - . :

tails of general observables, constitute the essence of tﬁ%s”?‘.'”'depe’?de”.‘ characterlsth functional, associated to the

instanton methodl12], successfully applied to problems like Mmodified Martin-Siggia-Rose action

the random advection of a passive scalar and Burgers turbu- - 1 ~

lence[12—15. Unfortunately, the implementation of the in- S=S+ > f APXAtQup( A+ dpvo = 20%4), 9

stanton approach in the three-dimensional incompressible

situation is plagued with non-perturbative difficulties, as pre-we write, after exchanging the order of integrations, the al-

viously noted in Ref[12]. It is somewhat simple to under- ternative(and exact expression for the vorticity pdf in the

stand why the saddle-point action that would be obtainedonditional form,

along the above lines cannot lead to the correct vorticity pdf B2 "

tails (or to the pdf tails of any linear combination of velocity i i 2\

derivatives. Since the saddle-point equations are invariant plo) _Llino 2 Dasf_w dh exp(=NomRIZ([] M)

under the transformations

(10
v =hY2y, t' =h7Y%, X' =x, v, =%, It is clear, thus, that instanton configurations may be natu-
(7)  rally labeled(in a functional sengeby the rate of the strain
0! =ho,, P'=hP, Q' =h%2Q, \' =ha, tensora;, if they are now found as solutions of the saddle-

) ) ) ) point equations derived frorﬁTS:O, viz.,
whereh is an arbitrary scaling parameter, it follows that the

saddle-point action has necessarily the general f@m 0ol = 0ol o= Al g+ Igv o = 2055=0, (119
=\32f(\"12), yielding, in the high Reynolds number limit,
In[p(w)]~-w® at the right tail(that is, w>0), which is a
very unlikely expression under the light of numerical and
experimental finding$16—24.

One might conjecture that the functional approach would
work if fluctuations around the instanton were taken into
account, possibly to all orders in the perturbation series, t\hove, we haver, = g+ vi?, Q" Eéaﬂ+Q5aﬁ, and
overcome then®? dependence in the saddle-point action. - N “*

However, this is an extremely hard task to accomplish. A ol Xp _

more computationally oriented point of view is to hypoth- v, B 633“&5(& R)8(2)8(0), (12
esize that a family of instanton solutions could be defined = _

from the start, so that the overall contribution of the associ\Wherer.=vx“+y~ As can be easily checked, the saddle-
ated saddle-point actions would lead ultimately to physicallyPont Eqs.(ll@—_(llc)s are |rD/2arS|ant unde(7), replacingQ
meaningful results. Indeed, we have found that the latter op?Y Qug @nd addindo,;)’=h"*o",, to the set of transforma-
tion is the most promising one. tions. At high Reynolds numbers, the modified saddle-point

The hint on how to set up a family of instanton configu- action will have then the functional fori@=%2f[\"125"].
rations comes from the hypothesis that the small scale, in- It would not be an easy matter to solve exactly Egs.
tense bursts assumed to dominate the inviscid vorticity pdf11a—(11c). However, as a general and valuable feature of
tail are driven by the rate of strain provided by larger eddiesthe instanton method, it is not necessary to know the detailed
which according to standard ideas, fluctuate on slower timglobal form of solutions of the saddle-point equations
scales[21]. In fact, several turbulence models depict vortic- [12—15. In our particular problem, the small radi&sof the
ity enhancement along the energy cascade as a local procdagegration contour fol”, which is in the viscous range, in-
which takes place in a static background defined by an exdicates that a linearization of,(x,t) aroundx=0 would suf-
ternal straining flow[22]. Among the manifold scenarios fice. Also, as a first order approximation, the rate of the strain
proposed in the literature, it is worth mentioning Lundgren’swill be considered time-independent, as suggested from its

~ o~ . N ol
A0, = 0pdvg+ dpvgla + Qup) + I)\(S— =0, (11b
v

a

A_va+vﬁﬁﬁva+8ap+iDaB®65:0. (11C)
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role as a slowly fluctuating variable in the vorticity intensi- wDO)\RZ
fication process. w(t) = a2 exp(— 2alt]) (16)

While we are not worried with the global spatial behavior
of the velocity field, the instantons are required to have finitds the instanton vorticity. The imposition af,(0,t)=0 in
action, and to satisfy the boundary conditiop(x,0")=0,  (15)is guaranteed from the invariance®tinder generalized
assuring that solutions fay,(x,t) will not blow up fort  Galilean transformation§25], while the pressurd(x,t) is
— o, once the parabolic operatdt. is non-negatively eigen- fixed up to some unimportant additive time-dependent func-
valued. We may replace, equivalently, thg(x,0")=0 con-  tion, associated to the large scale boundary conditions. In

dition by order to consider the effects of smooth fluctuations around
X the instanton solutions, we take the fields giver{if) and
D,(x,07) :i)\fsﬁa—ég(rL -R2), (13)  perform the substitutions,—v,+dv,, U, —0,+,, etc.,
ry

in the path integration8), keeping inS terms defined up to
as it follows from the evolution equation for,(x,t) and the th~e second order in the perturbations. The integrations over
former boundary condition itself. Taking novaQ;ﬂ aQ and 5Q enforce the constraints,évz+dzév,=0 and
=04(da0 = dpv,) In (11b), we get, fort<0, d,0v,=0, respectively. Therefore, still working in the linear
approximation for the velocity field, we will havév (x,t)
=® x5, With O 5= €,5,0,. Defining, furthermorep ,4(t)
which is a Helmholtz-like equation. It is in fact always pos- =Jd°xX,d0 4 (an antisymmetric tensor, as it follows from the
sible to obtain a symmetric tensor solution 1}, closely  integration oversP), we obtain the phase-space reduced ex-
related to the result that the supportgfix,07), a singular  Pression

A+ﬁa—ﬁgﬁﬁva+vﬁﬁlgf}a20, (14)

ring, is backwardly advected in time by the reversed velocity 2DRA\2

field, as implied by Eq(14). It is not difficult to prove that Z([°],\) =exp - +> f D0 ,zDP 5 exp— M),
the backward advection of the singular ring will generate a 2L%a

contour with bounded lengtlland hence a non-vanishing 17

saddle-point contributionfor all t<0 if and only if of,

=03,=0, and the two eigenvalues of ; in the xy plane are which depends on the effective action

positive. Therefore, it is worth noting that the functional in- 0 o . 1

tegration in(10) turns to be effectively replaced by ordinary M =f dt Faaﬁ_ i{)aﬁ(@a,ﬁ 50’?,5670(’365/”7@/”7) .
integrations over the linearly independent matrix compo- -T

nentso$,, o3, ando3, of the rate of the strain. Observe that (18)

a5, is not in the set of integration variables, sineg +03, _ _ L
+03,=0, according to the incompressibility condition. The subsequent integration ougfs gives
We focus the analysis of the saddle-point equations on the 2D RAN2

: 7 L ) DoR'A

class of axisymmetric instantons, having in mind the axial Z([o°N) =exp - —( 5 — D¢, exp—H), (19
< ~ i 2L a

symmetry ofZ([o°],\). The general form oZ([¢°],\) will

be found through a symmetrization procedure, taking intovhere we have now

account thaZ([¢°],A=0) is invariant under transformations 2 [0 _

of the full rotation group,and any eventuealdependent cor- H=—— | dt(¢,~ oShp)?+ d B0 + ¢~ T)].
rection factor will be invariant only under rotations around 2DoJ 1

thez axis. In concrete terms, we are just taking advantage of (20)

the fact that Eqe(118—11¢) become fully axisymmetric and ) ) )

consequently more manageable if we write the rate of thd e functional determinant factor i9) can be exactly
strain tensor—the static background in the saddle-poinfomputed, from its relation to the problem of a set of three
equations—aSrf;ﬁ:a(éiﬂ—256,35,33), wherea is an arbitrary  One-dimensional Euclidean harmonic oscillat¢2]. The

positive parameter, an@iﬁEfgayfaﬁy- We get, then, the term p_roportional tcr—_>0+ in H proyides a zgro-mode regu-
saddle-point configuration larization of the functional integration. We find, thus, taking

together the saddle-point action and the fluctuations around

Qup(x,h) =~ iNe() 55,0 (Rexpat) -, ) 8(2), the instantons,
~ exp(mDoRNY L2075
1) =0,P(x,t) = (0(t)/4 —a2)r? /2 - 2822, Z([o®]\) = 21
Q(x,1) (x,t) = (0(t)/4 -a)ry 15 ([N Jdelcosho ] (21)
V(X t) = afwxﬁ— () €305%4/2, The rate of the strain tensor which appearq2d) can be

diagonalized through a simple rotation by an angkround
the z axis. Leto};=p—q, 05,=p+q, and o3;=—-2p be the

- _ X
Va(X,t) = lkfsﬂaré o(r, —Rexpat))&(2), matrix elements o in its diagonal form, wherg andq are

L real parameters. The jacobian of the mappifmq, 6)

where®(-) is the Heaviside function, and — (031,075,035 is 4/g|, and we write, on the basis ¢10),
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R2 ® p w2 -1 T T T T T T T T T
plw) = Iim—f dpf qdqf de ]
rR-02 Jo 0 ~ml2 AN

X J i d\ exp- iNomRAZ([aS]N). (22

—00

In the largeT limit the hyperbolic cosine in21) is well @ )
approximated by a simple exponential and the vorticity pdf Q; |
may be written in a closed analytical form. We get the %0
t-distribution —
15(g(w?)’? 7
plw)=—— =7, (23)
16(0? + glw?) 2

wheregx= x and(w?) is the actual expectation value of the
squared vorticity, to be taken from experiments or numerical
simulations(we have[dww?p(w)=g(w?)/4). We expect Eq.
(23) to apply only at th/e_pjf tails and their leading order
corrections, whergw|> \(w?). FIG. 1. The vorticity pdf tails taken fron23) (solid lineg are
A high precision agreement holding around three decadesompared to numerical result$9,2q at the Taylor-scale Reynolds
of the vorticity pdf is found between the tails predicted by numberR,=150.
(23), with g=5.5 and\,rm: 10, and the results of numeri-

cal simulations at moderately high Reynolds numiti&¥, as tivation, the idea that the intermittent vorticity bursts ob-
shown in Fig. 1. The vorticity pdf is dominated by vortex served in turbulent flows arise from the coupling of vorticity
tubes[19], as corroborated by a systematic wavelet studyand relatively slow fluctuations of the rate of the strain ten-
[20]. The relevant vorticity range in our fit is localized con- sor. A supporting comparison was established between the

siderably beyond the usual Gaussian core. Itis an interestingrticity pdf tails given by(23) and previous numerical re-
problem, left for further investigation, to determine the Rey-gyjts.

nolds number dependence, if any, of the fitting paramgter

To summarize, we studied the form of vorticity pdf tails at | thank M. Farge for providing numerical vorticity pdf
high Reynolds numbers by means of the instanton techniquélata files. This work has been partially supported by CNPq
We took into account, as an essential phenomenological m@&nd FAPERJ.
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